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Abstract i

The asymptotic distribution of a U-statistic is found in the case when
the corresponding Von Mises functional is stationary of order 1. Practical
methods for the tabulation of the limit distributions are discussed, and the

results extended to certain incomplete U-statistics.
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§1. Introduction.

Let X ..,Xn be independent random k-vectors with common distribution

i i

function F. Let ¢(51,...,§m) be a function on ka symmetric in the

k-vectors XpsecoXp and let

m
6(F) = [...[ ¢(xq,...,x ) T F(dx,) (1)
1 m i
Rk Rk i=1
be a functional defined on the space of d.f.s. on le, assuming that the
integral exists. An unbiased estimate of 6 = 6(F) is furnished by the
U-statistic
- -1
u, - [ml L oX; ,oe0nX ) ()
1 m
where the sum extends over all (;] subsets of the Xi. Following Hoeffding
[10], define
¢c(x1,...,xc) = E[¢(xl,...,xc, Xc+l""’xm)] = L, 2o
and Wc(xl,...,xc) = oc(xl,...,xc) - 0, assuming all expectations exist.
Also define
CO =0, e Var(?c(Xl,...,Xc)) 3 C 8 Ld;0aaygl
If for some nonnegative integer d < m, Cgel * 0 but e ™ 0 forc =0,...,d,

the functional (1) is said to be stationary of order d at F.
has an asymptotically normal distribution after suitable normalization [10].

If d # 0, the distribution is no longer normal and may be obtained by
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If d = 0, then (2)

Mri




applying the theory of differentiable statistical functionals due to
Von Mises and Filippova ({13}, ([7])).
Let ¥ be the empirical distribution function of Xl”"’xn‘ The

distribution of

1 n n
O(F) === ] .o ] MK 00X ) (3)

is closely related to the distribution of Un as described in §2, and the

asymptotic distribution of e(Fn) is given by the following theorem.

Theorem (Von Mises, Filippova). Let 6 be a stationary functional of order
d+1

d. Then the asymptotic distribution of n . (e(Fn)-e) is identical to that

of

5 {:] ni(k"'l{zk\yd”(xl'm’xd) 151 (F, (dx,)-F(dx,)) . (4)
In the case d = 1, the asymptotic distribution of (4) can be found
using integral equation techniques. Filippova gives an expression for the
characteristic function of the asymptotic distribution of (4) in terms of
Fredholm determinants. Gregory [8] gives a more concrete representation of
the asymptotic distribution of (4) as an infinite series of random variables,
in the case m = 2. Below we combine these results to give explicit
expressions for the c.f.s. of the limit distributions and discuss practical
methods for the tabulation of the limit distributions. We also make some

remarks about incomplete U-statistics.
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§2. Relationship between B(Fn) and U,

Let T be the set of indices {(il,...,i Y1 § ip <n, 2 =1,...,m} and let

m
lj be the subset of I consisting of those m-tuples with exactly j distinct

integers. Define for each j = i,...,m a symmetric kernel ¢(j)(xl,...,xj) by
j!¢(j)(xl,...,xj) = z(j) ¢(xil,...,xim) where the sum E(j) is taken over all

m-tuples of indices (il,...,im) with 1 < il < j such that exactly j of the

; s 1
i, are distinct. Then G(Fn) = 2 ¢(Xi ,...,Xi )
n I 1 m

1
- ¢(Xi e

1

where U(J) is the U-statistic corresponding to the kernel ¢(j)' Note that

U(m) = U_.. Thus
n n

n(O(Fn)~9) = n(Un-e) + Zn

n! ned
=1 (n-j)m™ 1 "

If 0 is stationary of order 1, then n(e(Fn)-e) converges to a nondegenerate

distribution as seen in §3, and Var(nUn) is bounded as n + « ([10]).

Moreover, E(Zn) converges to the quantity :Eﬁ;:ll + e(m‘l) where

R sy




e . T W WY T S -_

(m-1) e oy G b
8 = E[o(m_l)(xl....,xm_l)] and since Var Un =0 ;5 and Var U 0[n]

for j <m it follows from (6) that zn converges in probability to

~n(n-1) . n(m-l) and so the asymptotic distributions of n(n(Fnl-U) and

2 L
n(Un-ﬂ) differ only by a shift. A more explicit expression for O(m'l) is

(m-1)
0 = B0 ) (e n X))

))

m

1 ¢ A
* =0T L) L(o(xil....,xi

1 m! (m-1)
(m-1)! 2

BIGER, X, Ko o0 X ()

m-1

mm-1) ko, (x,,X,))

)

. - e Ay oo W
and so we may write l%m E(un, = lﬁm En(B(Fn) 0) 2‘B(\Y:(Xl,xl)).

4
%
b

§3. Asymptotic distribution of n(O(Fn)-G) and n(Un-ﬂ).

By the Von Mises - Filippoya theorem, the asymptotic distribution of

n(G(Fn)-e) coincides with that of

P Y ===

Wz(xl,xz)Gn(dxl)Gn(dxz)

where G_(x) = /n(F_(x)-F(x)). Consider the kernel gz(xl,x,) where (all

rear e et iy g ceton - oy o

integrals are over IRk)

S TS

¥y (x0%,) = ¥y(xp,x,) - / ¥, (x VIF(dV) - / ¥ (0, X)) + f [ ¥(u,v) F(du)F(dv) .

Then it is easily seen that




S
[ ] ¥, (xa%,)6, (dx G (dx,) = [ [ ¥(x),%,)6, (dx))G) (dx,)
lﬂ 3‘"
= — ¥ (X ,X,) . (8)
Sistget ¢ 7

Now let \j. j = 1, be the (real) eigenvalues of the linear operator
L:(le,dF) > LJ(IRk'dF) with (symmetric) kernel Il. We note that by the

k
assumption that [, exists, f f \W,(u,v){' F(du)F(dv) < «. By the results of

2
[8], we can see that

(i) the asymptotic distribution of (8) is the same as

(m) v NP
(2]{j21 \j(Yj-l) + L(wz(xl,xl))} (9)

5
where the Yi are independent xi randon variables; and

(1) ¢ )

j=1 h?

l\jl < « then the asymptotic distribution of (8) is that of Jf

'

To prove these, set the functions hn in Theorem 2.1 of [8] to be 0, then

% ) Qz(xi.xj) converges in distribution to ) \i(Yj'l)‘ Since
ifj J=l -
1 ‘:‘ n 1 i 1 T‘; o 1 ' (S
2 - 2 v_ (X, X = i X
g0 1 REE)eg | BWRJeg L YA &g 1. Yo (%X
i=1 j=1 izj i=1 i=1

converges in probability to E[gz(xl,xl)] by the WLLN, (9) follows upon

noting that

BV, (X X)) ] = [ ¥y (x,XDF@x) - B(Y,(X,X,)

= [ ¥, (x X IF(dx))

(Y, (X, XD




since E[W,(Xl,xz)] = 0 by [10]. (ii) follows as in 1.2.3 of [8].

Using (i) and (ii) above and (5) we see that the asymptotic

K

distribution of n(U -8) is that of {T} N Xj(Yj—l), and if ) ]Ajl < @  the
2)551

. 1
distribution is that of (g] Z lej - E[Yz(xl,xl)]‘_ The characteristic
i1 ]

functions of the limit distributions are thus seen to be

o =itX! A

R e 70O-#a? case and
' jt) in the former case amn
JS

e-ltu

$(t)

\
d(t) ?Jﬁ(wz(x‘,xl)] and

———

3
n(l-Zix;t) 2 in the latter where i =

§4. Tabulation of the limit distribution.

In this section we discuss practical means of computing the limit
distribution of n(Un-e). We first consider the case when the eigenvalues \j
are summable. The method employed to tabulate the limit distribution will
depend on the amount of information we possess about the eigenvalues. There

are three subcases.

(i) The eigenvalues must be determined numerically, and we have
accurate determinations of \i for 1 < j < \N.

(ii) The eigenvalues can be explicitly determined for all j.

-
(iii) The characteristic function of | \ij, namely
«© 3 jgl
¢(t) = I (I-Zitxj) 5, can be expressed in closed form.
j=1
In subcase (iii), the limit distribution may most conveniently be found by

numerical inversion of ¢(t). Various methods are available (e.g. Davies

[5], Bohman [3], Martynov [12]). In subcase (ii), computation of the inner

product is necessary. A reasonable way to accomplish this is described in
N-1

[2] and consists of expressing ¢(t) = 1 (l-2itxj)_5 ¢,(t) where
j=1 ;




log #(t) = % J log(l-zitxj). Formally, we have
i=N
-SSR K | v X
log ¢(t) =% J 7 )k =y%] ¢, 2i0) /k whereC, = T A}
¥ L j N,k N.k T |
j=N k=1 k=1 j=N
C

The formal manipulations above are valid if the last power series converges.

Since [C.| 521 1 1Al R Ck. say, this convergence will take place if
Nk =N i N
\ ‘

|t] S 5 The numerical inversion methods above will require the
- N b

computation of ¢2 at a finite number M of ordinates t, SO choose N so large
that Cy < (2 max ltml)—l and use the power series to compute ¢,.

In special cases other methods may be used. if the eigenvalues \i are
all positive, the asymptotic results of Zolotarev [14] and Hoeffding [11]
furnish good approximations for the tail probabilities. If the eigenvalues
are all positive and of multiplicity unity, then Smirnov's formula may be
used as an efficient numerical inversion method; see Martynov [12] for
details.

In subcase (i) two possible approaches suggest themselves. The use

N @®
of the distribution of Z \in to approximate that of z \ij will not be
j=1 - j=1

satisfactory in general for reasonable values of N. For a discussion of

this point and bounds on the truncation error see [2]. Rather, some method

of approximating the tail of the series is required. If all the Xj tor

j > N are positive, we may approximate (see [6]) the distribution of

@ N

¥ 1.Y, by that of X \.Yj + cY where Y is an xi variate and ¢ and v are
j:‘ j:l

chosen to make the mean and variance of the two distributions coincide.

Thus ¢ and v are obtained from

g
i
E




N, .
.z Xj +CcV = Var(Wz(Xl,XZ)) = CZ
i=1
N
.2 xj + cv = E[¥,(X,X))]
j=1
yielding
N
Bs * ) );
C = l=l \% 3
(E[¥,(X,X)] - ] )
- j:l J

3l N
v = SE(Y,(X,X)) - -21 xj]

The c.f. of the approximating r.v. is

- Y /2
05(t) = 1 (l-ZiAjt)- (1-2ict) V< (10)
j=1

and a numerical inversion of (10) furnishes the desired approximation.

If all but a finite number of the lj are not of the same sign, one may

N-1

compute the density of 2 Xin by e.g. the integral equation method of
iay

Grenander et al. (9] and approximate the distribution function of the

(L

remainder Z ijj by means of a Cornish-Fisher expansion. The cumulants of
j=N

the remainder are easily seen to be

« Vg
= (r l)!CN’r

N-1 N-1
2
so x; = E[¥,(X.,X))] - jzl kj.rz -Z, - jzl Xj and for r > 3 the k. may be
approximated reasonably well by computing a few more eigenvalues. The limit

df may then be obtained by a numerical convolution.




If all but a finite number of eigenvalues are positive (or negative)
then the kernel Wz(xl,xz) can be expressed as the sum of a degenerate and a
positive definite (negative definite) kernel and hence its eigenvalues will

be summable. Thus in the nonsummable case, an infinite number of both

positive and negative eigenvalues will be encountered. If only a finite

number are known, we may employ the Cornish-Fisher method suggested above.
LS, 1) T I
If all are known, we may compute ¢2(t) = [ e J(l-Zikjt)-’ by
o J'—'N
log 37(t) = i 2 CN k(2it)k/k and proceed as before.
“ k=2 2

§5. Some remarks on incomplete U-statistics.

The calculation of the U-statistic (2) requires the averaging of

(

[:} terms, which may not be practical if m and n are not small. To reduce the

volume of computation Blom [1] and Brown and Kildea [4] have proposed the
use of incomplete U-statistics of the form
U=—1-{¢(x X, § (11)
N i,.uo’ .

1 1m

when the sum in (11) is taken over N specified or randomly selected
m-subsets of the indices. The asymptotic distributions of nondegenerate
incomplete U-statistics (cl > 0) are studied in the references above. For
the degenerate case §1=0,c2>0 some of their results remain true while others
need modification.

Denote by ¢. the r.v. ¢(X., ,...,X. ) where (i,,...,i ) is the i-th

i i, i 1 m

subset of indices in the summation (11). As in [1], let P. denote the

proportion of the N2 pairs (¢i,¢j) having ¢ indices in common. P. will be a

fixed constant or an r.v. depending on the method of subset selection. From

[1] we have




10

m
var U = CZZ E(p)e,
and the assumption is made that n Var U + g where B is some nonnegative
constant. Note that the E(pc) do not depend on ¢ but only on the method of
subset selection.

The asymptotic distribution of U depends on the ratio "N, TETN
as n,N both + =»; the quantities ®; are asymptotically independent; and the
degeneracy of the complete U-statistic is irrelevant to the limit
distribution of vn(U-8), which will be normal with mean zero and variance
t,- On the other hand, if "/N > 0, the limit distribution of U will
coincide with that of the complete U-statistic under certain conditions.

For example, from [1] we have (denoting the complete U-statistic by UO)

5 2
Var U - Var U0 = E(U-UO) =

S0 n(UO—e) and n(U-9) will have the same asymptotic distribution if

2
nz(vnr U - Var Uo) converges to zero. Now n2 Var U0 converges to 2(21 o
so a sufficient condition for the coincidence of the asymptotic

distributions is

- 2
g 2[2] ¥
lim n E(pc) =
n-<o
0 c*® 2 .

Alternatively, if the N subsets are chosen at random, with replacement from

the (:] possible subsets, then ([1])

1
Var U - Var U0 = ﬁ(cm -~ Var UO)




- e e S v P -

11

2
so the asymptotic distributions coincide if s /N converges to zero. Thus

. 5 Lo 2 :
- the incomplete U-statistic based on n o randomly chosen subsets will have

the same asymptotic distribution as that of the complete U-statistic based

on ["1 subsets.
m
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